A Class of Inexact Variable Metric Proximal Point Algorithms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Inexact Variable Metric Proximal Point Algorithms

For the problem of solving maximal monotone inclusions, we present a rather general class of algorithms, which contains hybrid inexact proximal point methods as a special case and allows for the use of a variable metric in subproblems. The global convergence and local linear rate of convergence are established under standard assumptions. We demonstrate the advantage of variable metric implement...

متن کامل

Inexact and accelerated proximal point algorithms

We present inexact accelerated proximal point algorithms for minimizing a proper lower semicontinuous and convex function. We carry on a convergence analysis under different types of errors in the evaluation of the proximity operator, and we provide corresponding convergence rates for the objective function values. The proof relies on a generalization of the strategy proposed in [14] for genera...

متن کامل

Error bounds for proximal point subproblems and associated inexact proximal point algorithms

We study various error measures for approximate solution of proximal point regularizations of the variational inequality problem, and of the closely related problem of finding a zero of a maximal monotone operator. A new merit function is proposed for proximal point subproblems associated with the latter. This merit function is based on Burachik-Iusem-Svaiter’s concept of ε-enlargement of a max...

متن کامل

A family of variable metric proximal methods

We consider conceptual optimization methods combining two ideas: the Moreau-Yosida regularization in convex analysis, and quasi-Newton approximations of smooth functions. We outline several approaches based on this combination, and establish their global convergence. Then we study theoretically the local convergence properties of one of these approaches, which uses quasi-Newton updates of the o...

متن کامل

Self-adaptive inexact proximal point methods

We propose a class of self-adaptive proximal point methods suitable for degenerate optimization problems where multiple minimizers may exist, or where the Hessian may be singular at a local minimizer. If the proximal regularization parameter has the form μ(x)= β‖∇f (x)‖η where η ∈ [0,2) and β > 0 is a constant, we obtain convergence to the set of minimizers that is linear for η= 0 and β suffici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2008

ISSN: 1052-6234,1095-7189

DOI: 10.1137/070688146